

Background

Achondroplasia (ACH) is the most common human skeletal dysplasia and cause of disproportionate short stature, affecting ~1 in 25,000 births.

Infants with ACH can face serious complications related to critical foramen magnum stenosis leading to cervicomedullary compression and requiring surgical intervention^{1,2}.

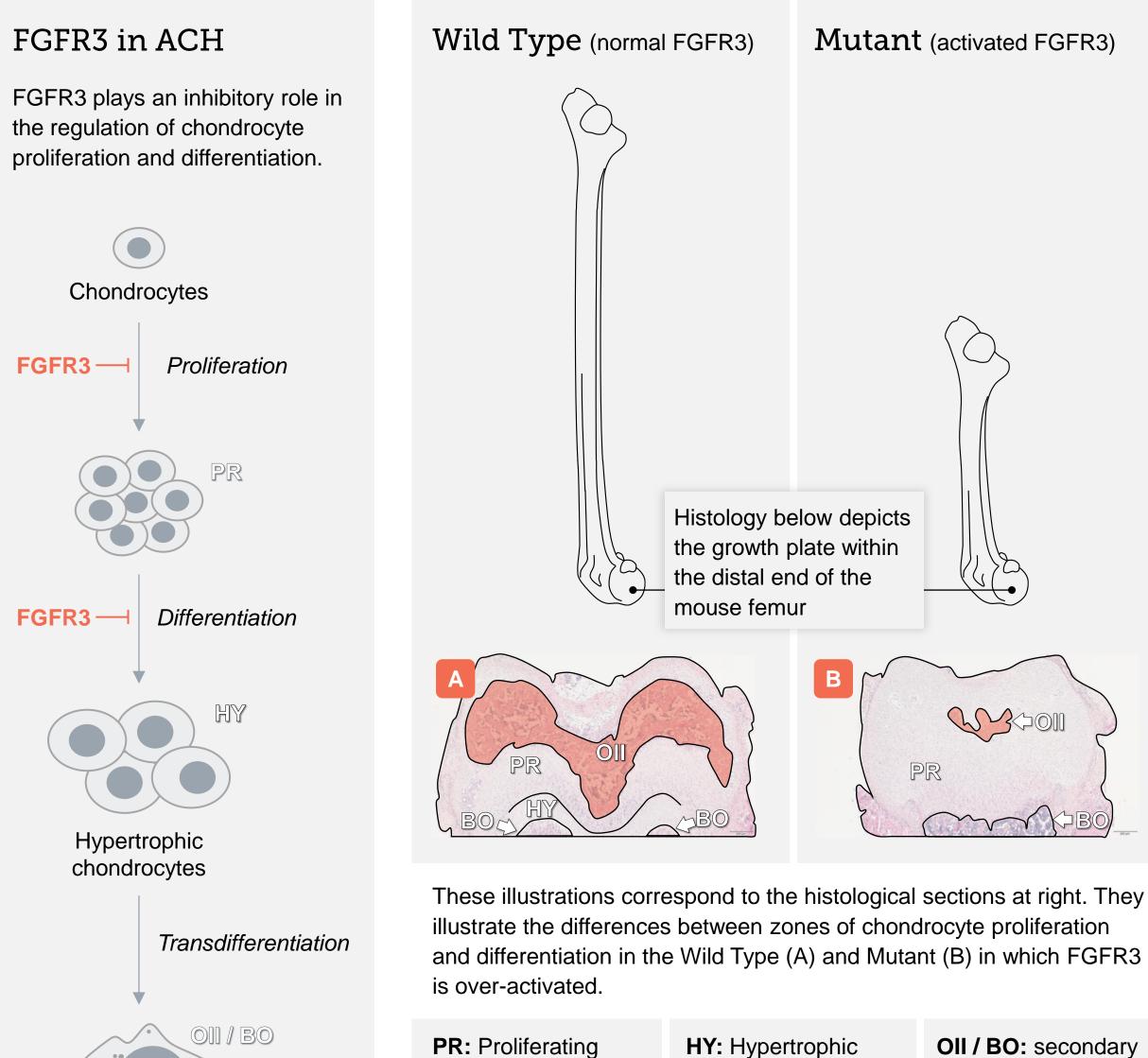
A specific mutation in FGFR3, G380R, causes over 99% of pediatric ACH^{1,3,4,5}.

FGFR3 is expressed in growth plate chondrocytes where it functions to regulate endochondral bone formation⁵.

The G380R mutation, as well as other mutations, results in increased FGFR3 activity, which impairs chondrogenesis in the growth plate, disturbing long bone elongation⁵.

TREATMENT

Osteoblasts


There is currently only one approved treatment option for ACH. Vosoritide, a C-naturetic peptide analogue, acting exclusively on the MAP kinase

pathway, was approved in 2021 as a daily injection to increase annual growth velocity in children with open growth plates.

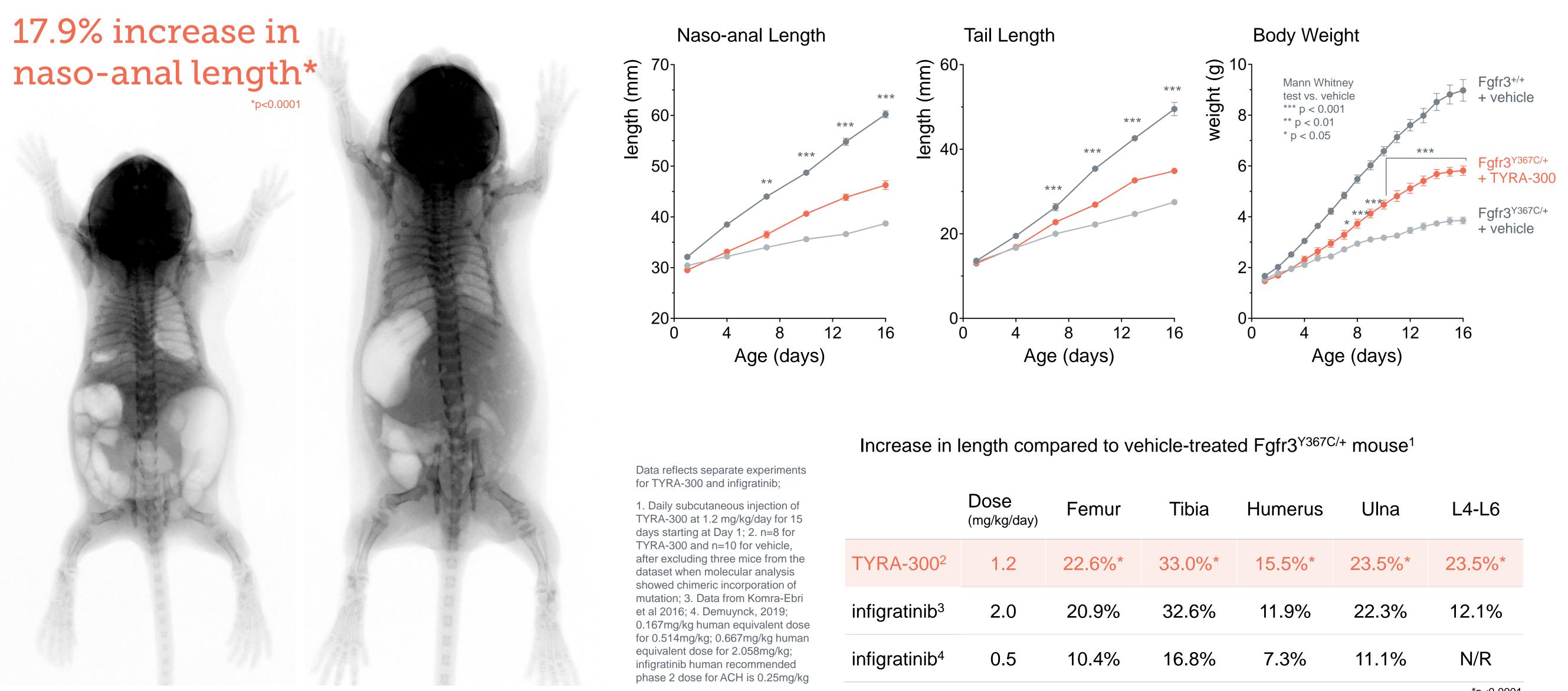
To provide an orally bioavailable therapy that acts specifically on the bone development pathway, infigratinib, a pan-FGFR1/2/3 inhibitor, was investigated in an Fgfr3^{Y367C/+} mouse model^{6,7} and is currently in clinical trials for ACH

TYRA-300 is an oral, highly selective FGFR3 inhibitor currently undergoing a Phase 1/2 clinical trial, SURF301 (Study in <u>Untreated and Resistant FGFR3+</u> Advanced Solid Tumors), which may provide a favorable therapeutic window with respect to anticipated toxicities compared to pan-FGFR inhibitors based on its specificity profile.

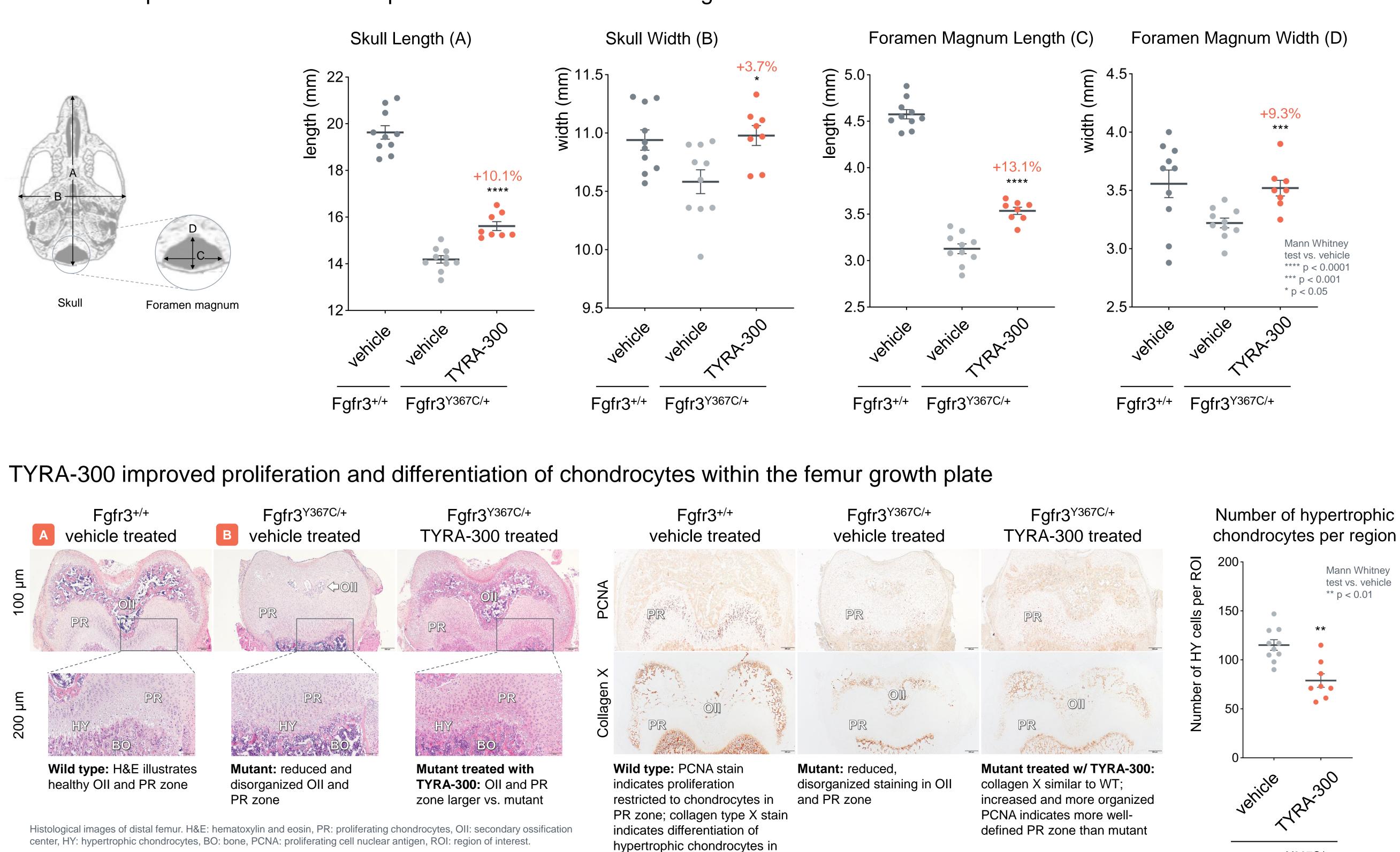
To assess the potential of TYRA-300 pre-clinically, we used a mouse model recapitulating most of the hallmarks of ACH. This Fgfr3^{Y367C/+} driven mouse model is characterized by a disproportionate short stature and a growth deficit affecting both endochondral and membranous ossification^{6,7,8,9,10}.

chondrocytes form clonal columns of cells that differentiate into prehypertrophic chondrocytes and then HY.

chondrocytes are master regulators of endochondral ossification. They undergo apoptosis or further differentiate.


ossification center / bone. Consisting of osteoblasts, the OII serves as protection for the growth plate.

TYRA-300 Demonstrates Significant Increases in Growth and Bone Length in a Mouse Model of FGFR3-Related Skeletal Dysplasias

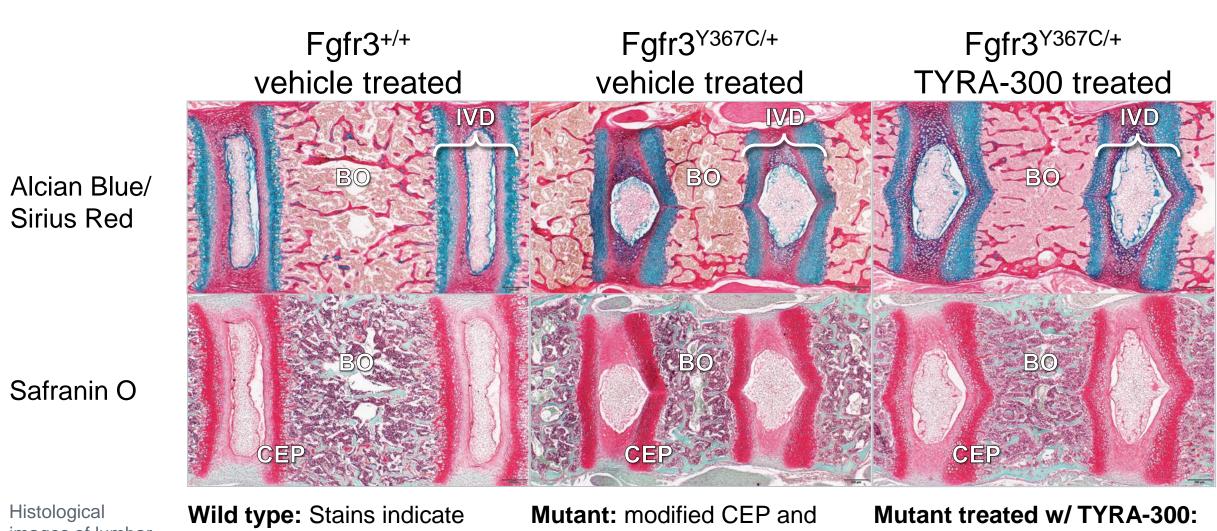

Laurence Legeai-Mallet¹, Matthias Guillo¹, Nabil Kaci,¹ Jacqueline H Starrett², Ronald V Swanson² 1. Université de Paris Cité, Imagine Institute, Laboratory of Molecular and Physiopathological Bases of Osteochondrodysplasia. Paris, France 2. Research and Development, TYRA Biosciences, Inc., Carlsbad, California USA

Results

TYRA-300 increased bone growth in the Fgfr3^{Y367C/+} mouse model of FGFR3-related skeletal dysplasia

TYRA-300 improved the size and shape of the skull and foramen magnum

center, HY: hypertrophic chondrocytes, BO: bone, PCNA: proliferating cell nuclear antigen, ROI: region of interest.


ib; ction of y for 15 =8 for		Dose (mg/kg/day)	Femur	Tibia	Humerus	Ulna	L4-L6
hicle, rom the alysis tion of nra-Ebri 019; ent dose g human g/kg; ended 25mg/kg	TYRA-300 ²	1.2	22.6%*	33.0%*	15.5%*	23.5%*	23.5%*
	infigratinib ³	2.0	20.9%	32.6%	11.9%	22.3%	12.1%
	infigratinib4	0.5	10.4%	16.8%	7.3%	11.1%	N/R

*p<0.0001

-		<u> </u>				
	Fgfr3+/+ vehicle treated	Fgfr3 ^{Y367C/+} vehicle treated	Fgfr3 ^{Y367C/+} TYRA-300 treated			f hypertrophi tes per regic
LX PCNA				· of HY cells per ROI	200 150- 100-	Mann Whitne test vs. vehic ** p < 0.01
Collagen	OII PR	ON PR	OII PR	Number	50-	• • •
	Wild type: PCNA stain indicates proliferation restricted to chondrocytes in PR zone; collagen type X stain indicates differentiation of hypertrophic chondrocytes in hypertrophic zone and Oll	Mutant: reduced, disorganized staining in OII and PR zone	Mutant treated w/ TYRA-300: collagen X similar to WT; increased and more organized PCNA indicates more well- defined PR zone than mutant		Fgfr3	RA-300 (267C/+

Results

TYRA-300 improved the architecture of the lumbar vertebrae

Histologica images of lumba vertebrae. IVD. intervertebral di BO: bone, CEP: cartilage endplate healthy lumbar vertebrae; Alcian Blue (blue = alvcosaminoalvcan), Sirius Red (red = collagen in bone) Safranin O (red = cartilage)

IVD shape; disorganized architecture of nucleus pulposus and annulus fibrosus and reduced size bone trabeculae vs. WT

modified shape of IVD and architecture of nucleus pulposus and annulus fibrosus compared to mutant, bone trabeculae mimics WT

TYRA-300 showed significant selectivity for FGFR3 and G380R

TYRA-300 vs. Ba/F3 Cellular IC_{50} (nM)

	infigratinib	TYRA-300
FGFR1	15.3	113
FGFR2	5.8	34.9
FGFR3	6.9	1.8
FGFR4	459	98.4

NanoBRETTM binding assay IC_{50} (nM)

	infigratinib	TYRA-300
FGFR3 WT	24	21
FGFR3 G380R	22	21

Fold Selectivity for FGFR3

FGFR1 2.2x FGFR2 0.8x FGFR4 55x 67x

TYRA-300 shows significant selectivity for FGFR3 over other FGFR isoforms

Conclusions

TYRA-300 increased bone length of the appendicular and axial skeleton in the Fgfr3^{Y367C/+} mouse model.

Improvements in the foramen magnum diameter were observed with TYRA-300.

Histological staining indicated that TYRA-300 restored the architecture of the growth plate by improving proliferation and differentiation of chondrocytes.

References

- 1. Pauli, Orphanet J Rare Dis, 2019, 14(1):1
- 2. Hecht et al., Am J Hum Genet, 1987, 41(3):454-64. 3. Bellus et al., Am J Hum Genet, 1995, 56(2):368-373
- 4. Rousseau et al., Nature, 1994, 371(6494):252-4.
- 5. Ornitz and Legeai-Mallet, Dev Dyn, 2017, 246(4):291-309.
- 6. Lorget et al., Am J Hum Genet, 2012, 91(6):1108-14.
- 7. Komla-Ebri et al., J Clin Invest, 2016, 126(5):1871-84.
- 8. Pannier et al., Biochem Biophys Acta, 2009, 1792(2):140-7.
- 9. Mugniery et al., Hum Mol Genet, 2012, 21(11):2503-2513.
- 10.Di Rocco et al., Hum Mol Genet, 2014, 23(11):2914-25.
- 11.Demuynck et al., ASHG, 2019.

The authors would like to thank Todd Harris and Hiroomi Tada for their insights and management of this work. We also thank Rob Wishnowsky of Cruxio, Inc., for contributions to the poster.

Copies of this poster obtained through QR codes are for personal use only and may not be reproduced without written permission of the authors.

TYRA-300 was equally active against the FGFR3 G380R mutant and wild-type FGFR3 in a NanoBRETTM binding assay.

The FDA granted TYRA-300 Orphan Drug Designation for the treatment of ACH.

Using the data from SURF-301 and additional preclinical data, TYRA expects to submit an IND to initiate a Phase 2 clinical study in pediatric achondroplasia in 2024.

