

Clara Lemoine^{1*}, Matthias Guillo^{1*}, Nabil Kaci¹, Jacqueline H Starrett², Ronald V Swanson², Laurence Legeai-Mallet¹

1. Université de Paris Cité, Imagine Institute, Laboratory of Molecular and Physiopathological Bases of Osteochondrodysplasia. Paris, France 2. Research and Development, TYRA Biosciences, Inc., Carlsbad, California USA

*these authors contributed equally

BACKGROUND

Achondroplasia (ACH) is the most common human skeletal dysplasia and cause of disproportionate short stature, affecting ~1 in 25,000 births. Infants with ACH can face serious complications related to critical foramen magnum stenosis leading to cervicomedullary compression and requiring surgical intervention^{1,2}. A specific mutation in FGFR3, G380R, causes approximately 99% of pediatric ACH^{1,3,4,5}. FGFR3 is expressed in growth plate chondrocytes and osteoblasts where it functions to regulate endochondral bone formation⁵. The G380R mutation, as well as other mutation, results in increased FGFR3 activity, which impairs chondrogenesis in the growth plate, disturbing long bone elongation⁵.

TREATMENT

There is currently only one approved treatment option for ACH. Vosoritide, a C-naturetic peptide analogue, acting exclusively on the MAP kinase pathway, was approved in 2021 as a daily injection to increase annual growth velocity in children with open growth plates. To provide an orally bioavailable therapy that acts specifically on the bone development pathway, infigratinib, a pan-FGFR1/2/3 inhibitor, was investigated in an *Fgfr3*^{Y367C/+} mouse model^{6,7} and is currently in clinical trials for ACH. TYRA-300 is an oral, highly selective FGFR3 inhibitor currently undergoing a Phase1 clinical trial, SURF301 (Study in Untreated and Resistant FGFR3+ Advanced Solid Tumors), which may provide a favorable therapeutic window with respect to anticipated toxicities compared to pan-FGFR inhibitors based on its specificity profile. To assess the potential of TYRA-300 pre-clinically, we used a mouse model recapitulating most of the hallmarks of ACH. This Fgfr3^{Y367C/+} driven mouse model is characterized by a disproportionate short stature and a growth deficit affecting both endochondral and membranous ossification^{6,7,8,9,10}.

RESULTS

TYRA-300 increased bone growth in the *Fgfr3*^{Y367C/+} mouse model of FGFR3-related skeletal dysplasia

TYRA-300 improved the synchondroses of the foramen magnum

TYRA-300 improved the size and shape of the skull and foramen magnum

institut

imaging

IR LES MALADIES GÉNÉTIOUES

TYRA-300 increased proliferation and differentiation of chondrocytes within the femur growth plate

PR		PR		-	PK	
PR HY BO	PR HY BO	PR HY BO	Collagen X Bu Bu D	OII PR	OII PR	Safranin O CEP Stains indicate healthy lumbar Modified CEP and IVD Stains indicate healthy lumbar Modified CEP and IVD Stains indicate healthy lumbar Abient shares discussional
H&E illustrates healthy	reduced & disorganized	OII and PR zone larger	PCNA stain indicates	Reduced, disorganized	Collagen X similar to WT;	glycosaminoglycan). Sirius architecture of nucleus and annulus fibrosus compared
OII and PR zoneOII and PR zonevs. mutantHistological images of distal femur. H&E: hematoxylin and eosin, PR: proliferating chondrocytes, OII: secondary ossification center HY: hypertrophic chondrocytes BO: hone PCNA: proliferating cell nuclear antigen			proliferation restricted to chondrocytes in PR zone; collagen type X stain indicates differentiation of hypertrophic		increased and more organized PCNA indicates more well- defined PR zone than mutant	Red (red = collagen in bone), pulposus and annulus to mutant, bone trabeculae Safranin O (red = cartilage) fibrosus and reduced size of mimics WT bone trabeculae vs. WT
center, in pertrophic chondrocytes,	bo. bone, i civit. promerating cen nuclea		chondrocytes in hypertrophic zone and OII			Histological images of lumbar vertebrae. IVD, intervertebral disc, BO: bone, CEP: cartilage endplate

CONCLUSIONS

TYRA-300 increased bone length of the appendicular skeleton in the *Fgfr3*^{Y367C/+} mouse model. Improvements in the foramen magnum area and synchondroses were observed with TYRA-300. Histological staining indicated that TYRA-300 restored the architecture of the growth plate by improving proliferation and differentiation of chondrocytes. The length and architecture of the lumbar vertebrae improved after treatment with TYRA-300. The FDA granted TYRA-300 Orphan Drug Designation for the treatment of ACH. Using the data from SURF-301 and additional preclinical data, TYRA expects to submit an IND in 2024 to initiate a Phase 2 clinical study in pediatric achondroplasia.

Acknowledgement: The authors would like to thank Todd Harris and Hiroomi Tada for their insights and management of this work. We also thank Rob Wishnowsky of Cruxio, Inc., for contributions to the poster and Chantal Fayad for lumbar vertebrae staining.

REFERENCES

TYRA-300 improved the architecture of

the lumbar vertebrae

1. Pauli, Orphanet J Rare Dis, 2019, 14(1):1. 2. Hecht et al., Am J Hum Genet, 1987, 41(3):454-64. 3. Bellus et al., Am J Hum Genet, 1995, 56(2):368-373. 4. Rousseau et al., Nature, 1994, 371(6494):252-4. 5. Ornitz and Legeai-Mallet, Dev Dyn, 2017, 246(4):291-309. 6. Lorget et al., Am J Hum Genet, 2012, 91(6):1108-14. 7. Komla-Ebri et al., J Clin Invest, 2016, 126(5):1871-84. 8. Pannier et al., Biochem Biophys Acta, 2009, 1792(2):140-7. 9. Mugniery et al., Hum Mol Genet, 2012, 21(11):2503-2513. 10. Di Rocco et al., Hum Mol Genet, 2014, 23(11):2914-25. 11. Demuynck et al., ASHG, 2019.

Fgfr3^{Y367C/+}

TYRA-300 treated